MLflow가 없던 시절

MLflow가 해결하려고 했던 Pain Point

MLflow

코드 예시

# train.py
  import numpy as np
  from sklearn.linear_model import LogisticRegression

  import mlflow
  import mlflow.sklearn
	
  if __name__ == "__main__":
      X = np.array([-2, -1, 0, 1, 2, 1]).reshape(-1, 1)
      y = np.array([0, 0, 1, 1, 1, 0])
      lr = LogisticRegression()
      lr.fit(X, y)
      score = lr.score(X, y)
      print("Score: %s" % score)
      mlflow.log_metric("score", score)
      mlflow.sklearn.log_model(lr, "model")
      print("Model saved in run %s" % mlflow.active_run().info.run_uuid)

핵심기능

  1. Experiment Management & Tracking